metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Liang Zhu,* Song Yang, Ji-Long Ma, Xiao-Yang Qiu, Lin Sun and Si-Chang Shao

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China

Correspondence e-mail: hlzhu@wist.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.057 wR factor = 0.122 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2-aminopyrimidine)silver(I) trifluoromethanesulfonate hemihydrate

In the title compound, $[Ag(C_4H_5N_3)_2](CF_3O_3S)\cdot 0.5H_2O$, there are two similar mononuclear Ag^I complex cations in the asymmetric unit. Each of the Ag atoms is coordinated by two imine N atoms from two 2-aminopyridine ligands and is in a distorted linear geometry. Numerous weak interactions connect the complexes to form a three-dimensional structure.

Received 26 August 2003 Accepted 6 October 2003 Online 23 October 2003

Comment

The title complex, (I), crystallizes in the triclinic space group $P\overline{1}$ with Z = 4, and consists of a 2-aminopyrimidinesilver(I) cation, a trifluoromethylsulfonate anion and water of crystallization. The two crystallographically independent silver(I) complexes have similar structures. Each of the Ag atoms is in a linear configuration and is coordinated by two imine N atoms from different pyrimidine ligands. The average Ag-N bond lengths for Ag1 [2.135 (5) Å] and Ag2 [2.140 (5) Å] are in the normal range for silver(I) complexes with imines. The N-Ag-N angle is 173.68 (18)° for Ag1 and 177.83 (18)° for Ag2, indicating that these two central metal atoms have a similar slightly distorted linear coordination environment. The dihedral angles between the two aromatic rings linked by Ag1 and Ag2 are 16.70 (4) and 6.90 (4) $^{\circ}$, respectively. There are a large number of hydrogen bonds (see Fig. 2). These weak interactions connect the complexes to form a three-dimensional network.

Experimental

CF₃SO₃Ag and 2-aminopyridine (apd) from a commercial source were used without further purification. CF₃SO₃Ag (0.5 mmol, 128 mg) and apd (1.0 mmol, 95 mg) were dissolved in acetonitrile (6 ml). The mixture was stirred for *ca* 5 min to give a clear solution. After keeping the resulting solution in air for 2 d, large colourless crystals were formed. The crystals were isolated, washed three times with acetonitrile and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 90%). Elemental analysis found: C 23.58, H 2.50, N 18.35%; calculated for C₉H₁₁AgF₃N₆O_{3.5}S: C 23.70, H 2.43, N 18.42%.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of the asymmetric unit of the title compound, (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of (I), showing the hydrogen-bonding interactions and the weak interactions around Ag atoms as dashed lines.

Crystal data

$[Ag(C_4H_5N_3)_2](CF_3O_3S) \cdot 0.5H_2O$	Z = 4
$M_r = 456.17$	$D_x = 2.005 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 10.194 (2) Å	Cell parameters from 6425
b = 13.112 (3) Å	reflections
c = 13.173 (3) Å	$\theta = 2.5 - 25.5^{\circ}$
$\alpha = 113.67 \ (3)^{\circ}$	$\mu = 1.53 \text{ mm}^{-1}$
$\beta = 105.12 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 96.20 \ (3)^{\circ}$	Prism, colourless
V = 1511.1 (6) Å ³	$0.42\times0.34\times0.15~\mathrm{mm}$

Data collection

Siemens SMART CCD area-	575
detector diffractometer	444
φ and ω scans	$R_{\rm in}$
Absorption correction: multi-scan	θ_{ma}
(SADABS; Sheldrick, 1996)	h =
$T_{\min} = 0.541, \ T_{\max} = 0.795$	<i>k</i> =
6831 measured reflections	l =
Refinement	
Refinement on F^2	н

Remember on F $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.122$ S = 1.045758 reflections 425 parameters

5758 independent reflections 4440 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $g_{max} = 26.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -16 \rightarrow 16$ $I = -16 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} & w = 1/[\sigma^2(F_o^{-2}) + (0.0538P)^2] \\ & \text{where } P = (F_o^{-2} + 2F_c^{-2})/3 \\ (\Delta/\sigma)_{\text{max}} = 0.001 \\ \Delta\rho_{\text{max}} = 2.12 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} = -0.62 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots N6^{i}$	0.90	2.14	3.028 (7)	170
$N2-H2C\cdots O1W$	0.90	2.19	2.999 (7)	149
$N5-H5A\cdots O3^{ii}$	0.90	2.24	3.042 (6)	148
$N5-H5B\cdot\cdot\cdot N3^{iii}$	0.90	2.17	3.052 (7)	169
$N8-H8B\cdots O2$	0.90	2.19	2.990 (6)	148
N8–H8C···N12 ⁱⁱⁱ	0.90	2.15	3.040 (6)	172
$N11-H11B\cdots O6^{iv}$	0.90	2.18	3.002 (6)	151
$N11 - H11C \cdot \cdot \cdot N9^{i}$	0.90	2.10	3.003 (6)	178
$O1W-H1WA\cdots O4^{v}$	0.71 (9)	2.17 (9)	2.817 (7)	151 (9)
$O1W-H1WB\cdots O1$	0.88 (10)	1.96 (11)	2.839 (8)	173 (1)

Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) x - 1, y, z; (iv) 3 - x, 2 - y, 2 - z; (v) 3 - x, 1 - y, 2 - z.

The H atoms attached to O1W were located in Fourier maps and were refined isotropically. All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N–H and C–H distances of 0.90 and 0.96 Å, respectively. The values for $U_{\rm iso}({\rm H})$ were fixed at 0.08 Å². The highest peak is located at (0.4318, 0.3716, 0.8305).

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Hubei Province, People's Republic of China, for research grant No. 2002B29002, and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). *SHELXL*97, *SHELXS*97 and *SHELXTL* (Version 5.1). University of Göttingen, Germany.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.