Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Liang Zhu,* Song Yang, Ji-Long Ma, Xiao-Yang Qiu, Lin Sun and Si-Chang Shao

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China

Correspondence e-mail: hlzhu@wist.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.057$
$w R$ factor $=0.122$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-aminopyrimidine)silver(I) trifluoromethanesulfonate hemihydrate

In the title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, there are two similar mononuclear Ag^{I} complex cations in the asymmetric unit. Each of the Ag atoms is coordinated by two imine N atoms from two 2-aminopyridine ligands and is in a distorted linear geometry. Numerous weak interactions connect the complexes to form a three-dimensional structure.

Comment

The title complex, (I), crystallizes in the triclinic space group $P \overline{1}$ with $Z=4$, and consists of a 2 -aminopyrimidinesilver(I) cation, a trifluoromethylsulfonate anion and water of crystallization. The two crystallographically independent silver(I) complexes have similar structures. Each of the Ag atoms is in a linear configuration and is coordinated by two imine N atoms from different pyrimidine ligands. The average $\mathrm{Ag}-\mathrm{N}$ bond lengths for Ag 1 [2.135 (5) \AA] and Ag 2 [2.140 (5) \AA] are in the normal range for silver(I) complexes with imines. The $\mathrm{N}-$ $\mathrm{Ag}-\mathrm{N}$ angle is $173.68(18)^{\circ}$ for Ag 1 and $177.83(18)^{\circ}$ for Ag 2 , indicating that these two central metal atoms have a similar slightly distorted linear coordination environment. The dihedral angles between the two aromatic rings linked by Ag1 and Ag 2 are 16.70 (4) and $6.90(4)^{\circ}$, respectively. There are a large number of hydrogen bonds (see Fig. 2). These weak interactions connect the complexes to form a three-dimensional network.

(I)

Experimental

$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Ag}$ and 2-aminopyridine (apd) from a commercial source were used without further purification. $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Ag}(0.5 \mathrm{mmol}$, 128 mg) and apd ($1.0 \mathrm{mmol}, 95 \mathrm{mg}$) were dissolved in acetonitrile $(6 \mathrm{ml})$. The mixture was stirred for ca 5 min to give a clear solution. After keeping the resulting solution in air for 2 d , large colourless crystals were formed. The crystals were isolated, washed three times with acetonitrile and dried in a vacuum desiccator using anhydrous CaCl_{2} (yield 90%). Elemental analysis found: $\mathrm{C} 23.58, \mathrm{H} 2.50$, N 18.35\%; calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{AgF}_{3} \mathrm{~N}_{6} \mathrm{O}_{3.5} \mathrm{~S}: \mathrm{C}$ 23.70, H 2.43, N 18.42%.

Received 26 August 2003
Accepted 6 October 2003
Online 23 October 2003

Figure 1
The structure of the asymmetric unit of the title compound, (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The crystal packing of (I), showing the hydrogen-bonding interactions and the weak interactions around Ag atoms as dashed lines.

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=456.17$
Triclinic, $P \overline{1}$
$a=10.194(2) \AA$
$b=13.112(3) \AA$
$c=13.173(3) \AA$
$\alpha=113.67(3)^{\circ}$
$\beta=105.12(3)^{\circ}$
$\gamma=96.20(3)^{\circ}$
$V=1511.1(6) \AA^{3}$

[^0]
Data collection

Siemens SMART CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.541, T_{\max }=0.795$
6831 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.122$
$S=1.04$
5758 reflections
425 parameters

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} \mathrm{i}^{\mathrm{i}}$	0.90	2.14	3.028 (7)	170
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O} 1 W$	0.90	2.19	2.999 (7)	149
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\text {ii }}$	0.90	2.24	3.042 (6)	148
N5-H5B \cdots N $3^{\text {iii }}$	0.90	2.17	3.052 (7)	169
N8-H8B . ${ }^{\text {O2 }}$	0.90	2.19	2.990 (6)	148
N8-H8C \cdots N12iii	0.90	2.15	3.040 (6)	172
N11-H11B $\cdots \mathrm{O}^{\text {iv }}$	0.90	2.18	3.002 (6)	151
$\mathrm{N} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{N} 9^{\text {i }}$	0.90	2.10	3.003 (6)	178
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O}^{\text {v }}$	0.71 (9)	2.17 (9)	2.817 (7)	151 (9)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 1$	0.88 (10)	1.96 (11)	2.839 (8)	173 (1)

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, 1-y, 1-z$; (iii) $x-1, y, z$; (iv) $3-x, 2-y, 2-z$; (v) $3-x, 1-y, 2-z$.

The H atoms attached to $\mathrm{O} 1 W$ were located in Fourier maps and were refined isotropically. All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ distances of 0.90 and $0.96 \AA$, respectively. The values for $U_{\text {iso }}(\mathrm{H})$ were fixed at $0.08 \AA^{2}$. The highest peak is located at $(0.4318,0.3716,0.8305)$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Hubei Province, People's Republic of China, for research grant No. 2002B29002, and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97, SHELXS 97 and SHELXTL (Version 5.1). University of Göttingen, Germany.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: $Z=4$
 $D_{x}=2.005 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 6425
 reflections
 $\theta=2.5-25.5^{\circ}$
 $\mu=1.53 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 Prism, colourless
 $0.42 \times 0.34 \times 0.15 \mathrm{~mm}$

